
J. Fluid Mech. (1970), vol. 41, part 2 ,  p p .  435-452 

Boeing Symposium on Turbulence 
435 

Turbulent dynamo action at low magnetic 
Reynolds number 

By H. K. MOFFATT 
Department of Applied Mhthematics and Theoretical Physics, 

Silver Street, Cambridge, U.K. 

(Received 30 November 1968 and in revised form 31 October 1969) 

The effect of turbulence on a magnetic field whose length-scale L is initially 
large compared with the scale 1 of the turbulence is considered. There are no 
external sources for the field, and in the abseuce of turbulence it decays by 
ohmic dissipation. It is assumed that the magnetic Reynolds number R, = uo2/h 
(where uo is the root-mean-square velocity and h the magnetic diffusivity) 
is small. It is shown that to lowest order in the small quantities 1IL and Rm, 
isotropic turbulence has no effect on the large-scale field; but that turbulence 
that lacks reflexional symmetry is capable of amplifying Fourier components of 
the field on length scales of order RG~Z and greater. In  the case of turbulence 
whose statistical properties are inva,riant under rotation of the axes of reference, 
but not under reflexions in a point, it is shown that the magnetic energy density 
of a magnetic field which is initially a homogeneous random function of position 
with a particularly simple spectrum ultimately increases as t-)exp (a2t/2h3) 
where a( = O(ug2)) is a certain linear functional of the spectrum tensor of the 
turbulence. An analogous result is obtained for an initially localized field. 

1. Introduction 
A theory that is likely to be of the greatest significance in geomagnetism and 

in cosmical electrodynamics has been developed recently by Steenbeck, Krause 
& R,adler (1966), Steenbeck I% Kranse (1966, 1967), Radler (1968) and Krause 
(1968). The theory is concerned with the effect of a turbulent velocity field 
on a magnetic field distribution in an electrically conducting fluid, it  being 
supposed that there is no external source of magnetic field, the only source 
being the electric current distribution within the fluid itself. 

A principal conclusion of these authors is that dynamo action (i.e. systematic 
transfer of energy from the velocity field to the magnetic field) will occur provided 
only that the statistical properties of the turbulence lack reflexional symmetry, 
i.e. are not invariant under a change from a right-handed to a left-handed frame 
of reference. The arguments can be justified with some degree of rigour only when 
the magnetic Reynolds number R, = prlu,  satisfies the condition 

R m <  1; (1.1) 

here, p is the magnetic permeability of the fluid, CT its electrical conductivity, I 
the length-scale characteristic of the energy-containing eddies and uo the r.m.s. 
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turbulent velocity. It seems quite likely however that a lack of reflexional 
symmetry is a sufficient condition for dynamo action irrespective of the order 
of magnitude of R,. 

The above result is in striking contrast with previous predictions concerning 
turbulent dynamo action. For example, Syrovatsky (1959) argued (on the basis 
of ideas put forward by Biermann & Schliiter 1950) that dynamo action will 
occur only if R, is greater than some number of order unity; Batchelor (1950) 
argued on the basis of the ‘vorticity analogy’ that sustained dynamo action 
will occur only if the magnetic diffusivity h = (p ) - l  is smaller than the kine- 
matic viscosity of the fluid, i.e. only if R, > R where B ( 9 1 )  is the turbulent 
Reynolds number; and Saffman (1963) argued that dynamo action might not 
occur under any circumstances due to an accelerating ohmic diffusion effect 
which occurs when the length scale of a convected magnetic field is systematically 
decreased. These authors concentrated on the tendency for magnetic energy 
to be swept towards higher wave-numbers, in spectral terminology, but they 
underestimated the potential importance of the possible ‘leak back’ to lower 
wave-numbers which can occur and which turns out to be a t  the heart of the 
Steenbeck, Krause & Radler mechanism. The possibility of such a leak back 
wag recognized but not quantitatively analyzed by Kraichnan & Nagarajan 
(1967). Some of the relevant arguments were reviewed by Moffatt (1961). 

A first version of the present paper was submitted for publication before I 
was aware of the existence of the above series of papers by Steenbeck et al. 
There is a considerable overlap between the work described in $4 2 and 3 and the 
work of these authors. The notation and the detailed method of analysis are 
different, but the conclusions are substantially the same. The treatment given 
here is certainly more compact than that given by Steenbeck et al., and since 
the results have been by no means widely recognized or accepted, it is felt that 
this complementary approach is well justified. The physical interpretation of the 
‘helicity effect ’ given in 8 4 has not been given previously, and the demonstration 
of dynamo action given in $ $ 5  and 6 is definitely simpler and more convincing 
than the arguments (based on more complicated models) given by Steenbeck 
et al. 

2. The averaged effect of the turbulence on the magnetic field 
We consider a fluid of infinite extent in a state of homogeneous turbulent 

motion with zero mean velocity. It will be further supposed that the mean pro- 
perties of the turbulence (e.g. correlation tensors) do not change with time, i.e. 
the turbulence is stationary as well as homogeneous; departures from these 
idealized conditions can be incorporated at  a later stage. The theory that follows 
is essentially a kinematical one, in which all statistical properties of the tur- 
bulence (determined by dynamical processes) are assumed known, and the evolu- 
tion of a passive vector field, which is both convected and diffused, is investigated. 

An electric current distribution J(x, t )  in the fluid will give rise to a magnetic 
field distribution B(x, t )  satisfying 

V A B =pJ, V . B  = 0, (2.1) 
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aB/at = V A (u A B)+hV2B, 
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and this develops according to the equation 

(2.2) 

where u(x,t) is the turbulent velocity field. The condition R, < 1 ensures 
that magnetic fluctuations on scales of order 1 and less will tend to be rapidly 
suppressed. Suppose however that, at  some initial instant t = 0, we have a 
magnetic field B(x ,  0) whose characteristic length scale L satisfies 

L > 1. (2.3) 

FIUURE 1. Schematic picture of the velocity field U(X, t )  on the scale 1 and the initial 
magnetic field B(x, 0) on the scale L. The box v, is large enough to contain a large number 
of turbulent eddies, but small enough for the field B(x, 0) to be approximately uniform 
inside it. 

Figure 1 shows the sort of picture that is envisaged. The light line represents an 
instantaneous streamline of the field u ( x ,  t) .  The heavy lines represent the lines 
of force of B(x ,  0), with mean curvature O(L-l). The field B(x ,  0) may be a 
localized field decreasing to zero outside some finite region, or it may itself be a 
random function of position, possibly homogeneous. In the absence of any tur- 
bulence, such a field would decay according to the diffusion equation 

aB/at = AV'B, (2.4) 

(2.5) in a time of order t, where t, = L2/h. 

In  the presence of the turbulence, the governing equation becomes (2.2)) the 
term V A (u A B )  representing the inductive effect of flow across the magnetic 
field. This term will undoubtedly generate magnetic fluctuations on the scale Z 
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(and smaller). It is then appropriate to treat the total field B(x, t )  as the sum of 
a field B,(x, t )  on the scale L and the generated field b(x, t )  on scales of order I: 

B(x, t )  = B,(x, t )  + b(x, t ) .  (2.6) 

If equation (2.2) is averaged throughout a box V, of side n satisfying 

l < a < L ,  (2.7) 

and the average is denoted by an overbar, then assuming that Ii = 0 (with the 
implication i3 = 01, 

and this is the appropriate modification of (2.4) as an equation describing the 
evolution of the large-scale field B,(x, t ) .  

The fluctuation field b(x, t )  may be calculated within the box V ,  to the lowest 
order in the small parameter 6 = 1/L by neglecting variation of B, throughout 
V,, i.e. by treating B, as locally uniform. The equation for b is then? 

aB,/at = V A (u A b) +hV2B,, (2.8) 

ab/at = V A [u A (B,+b)]+hV2b. (2.9) 

The term V A (U A B,) has the character of a forcing term in this equation and 
it is responsible for the generation of the fluctuations b on scales comparable 
with the scale 1 of u. 

Equation (2.9) is in general difficult to solve due to the presence of the random 
coefficient in one of the terms linear in b, viz. V A (u A b). However, under the 
condition R, < 1, 

(2.10) 

(as may easily be verified a posteriori), so that V A (u A b) may be neglected in 
(2.9) in comparison with V A (U A B,). We are then left with the more tractable 
equation, 

ab/at = V A (u A B,) + hV2b. (2.11) 

The first objective is to solve equation (2.11) for b in terms of u; and then to 
evaluate the term V A (u A b) in equation (2.8). It will be supposed that com- 
pressibility effects are unimportant, so that V a u = 0, and, neglecting (for the 
moment) spatial variation. of B,, (2.11) takes the form 

ab/at = B, - VU + hV2b. (2.12) 

If the forcing term B,.Vu were steady, then, after the disappearance of 
any irrelevant transients, the term ab/at in (2.12) would be identically zero. In 
fact the term B, Vu is unsteady, partly due to variation of u on a tinie-scale 
(the ‘turnover ’ time) 

to  = l/.u,, (2.13) 

and partly due to variation of B, on some time-scale t, (as yet undetermined). It 
will be assumed at this stage that t, is not less that to (actually, it will appear later, 
see (5.13), that t, 9 to) ,  so that the effective time during which the term B,-Vu 

t Strictly, a term - V h (U h b) should be included, but this is obviously small com- 
pared with V A (u A b) and may be omitted. 
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varies significantly is of order to. The term ab/at arises only through the time- 
variation of the forcing term on this time-scale; hence 

whereas 

(2.14) 

(2.15) 

Since the ratio is O(R,), it is consistent to neglect ab/at in (2.12) giving the 

(2.16) equation 

wherein B, is to be treated as uniform. 

1953, $2.5) 

hV2b = - Bo * V U ,  

It is now convenient to use the Fourier-Stieltjes representation (Batchelor 

u(x ,  t )  = dZ(k, t )  e ik .x ,  b ( x ,  t )  = dY(k, t)  e”.x, (2.17) s s 
in terms of which (2.16) becomes 

dZ(k, t ) .  
iB, * k dY(k, t )  = ___ 

hk2 

We are now in a position to calculate u A b. Evidently 

(2.18) 

(2.19) 

so that, using (2.18), (U A b){ = h-lAijBoj, (2.20) 

Aij= i P[dZ*(k, t )  A dZ(k, t)],Jc,. (2.21) s where 

Aij is a tensor determined by the statistics of the turbulence, and is uniform 
and steady only in so far as the turbulence is homogeneous and stationary. 

Returning now to (2.8), and recognizing that Bo(x) does vary on scales of 
order L, we have 

(2.22) 
a 

at 23k ax, 
aB,i = h-le.. - (Akl Bol) + hV2Boi, 

and this is the equation that replaces (2.4) when the effects of the turbulence 
are taken into consideration. The tensor coefficient A ,  is placed under the 
operator a/axj to allow for the possibility of inhomogeneity of the turbulence 
on scales much greater than a;  in the derivation of (2.22) it was necessary only 
that the statistical properties of the turbulence should have negligible variation 
throughout the box V,. The effects of the turbulence on the large-scale field are 
wholly summarizedin the first term on the right-hand side of (2.22). The important 
difference between (2.22) and (2.2) is of course that the quantity A,, is not a 
random quantity (like u ( x , t ) )  but a smoothed-out average property of the 
turbulence. In the particular case of homogeneous, stationary turbulence, 
on which attention will be focussed in the following sections, A ,  is independent 
of x and oft; and, dropping the suffix zero on the field B,, (2.22) becomes 

(2.23) 
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3. Properties of the tensor A ,  

of the turbulence bv the equation 
The Fourier-Stieltjes transform dZi is related to the spectrum tensor cDij(k) 

dZ:(k,  t )  dZ,(k,  t )  
d3k 

Qij(k) = lim - 
dsk+O 

Aij = ieikl k-'kj cDkz(k)d3k. s Hence (2.21) gives 

The spectrum tensor satisfies the condition of Hermitian symmetry, 

i.e. &is real (as is required by the relation (2.20)). Moreover QrCz(k) satisfies the 
incompressibility conditions 

so that, for example, 
k k @ k l ( k )  = 0, kZ@kl(k) = 0, (3.5) 

A12-A2, = i k-2k2(@z3-(D32)d3k-i  E-2k1(4)31-@13)d3k s s 
s 

= i 1 [ I ~ - ~ ( k g Q 2 3  + k, @13) - k-2 (k2  a 3 2  4- k, Q3J] d3k 

= i k2 [ - k, Q33 + k, @,,I d3k = 0, 

and it follows that A,,is symmetric. It is therefore possible to diagonalize A, 
by suitable choice of axes, so that say, 

where a, p ,  y are real parameters determined by the statistical structure of the 
turbulence. 

Suppose first that the turbulence is isotropic, i.e. its statistical properties 
are invariant with respect to rotation of the axes of reference and with respect to 
reflexions in the origin of reference. Then cDij(k) takes the simple form, 

QSj(k) = g4 (k2&- k&) = @$(k), say, (3.7) 

and it is easy to see from (3.2) that in this case 

Agj= 0. (3.8) 

The conclusion is that to the lowest order in the small parameters E and R,, 
isotropic turbulence has no effect on the decay of a (large-scale) magnetic field 
distribution. 
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If we relax the condition of reflexional symmetry, then (Batchelor 1953, $3.3) 
we can have an additional term in the expression for the spectrum tensor, viz. 

where, by virtue of (3.3), F(k)  is real. The tensor (3.9) is still invariant with 
respeck to rotation of the axes, but the second term changes sign on reflexion 
in the origin, i.e. on change from a right-handed to a left-handed co-ordinate 
system. Turbulence for which F(k)  + 0 may be described as 'pseudo-isotropic'. 
Substitution of (3.9) in (3.2) gives 

Aij = a$j, (3.10) 

where (3.11) 

The lack of reflexional symmetry, represented by the function P(k)  is associated 
with the degree of right-handedness or left-handedness (or 'helicity ') of the 
turbulence; the appropriate measure of this quantity for homogeneous tur- 
bulence (cf. Moffatt 1968) is 

U. o = i dZ*(k, t ) .  k A dZ(k, t )  = - i ki €ijk@jk(k) d3k, (3.12) - 1  s 
and, with aij given by (3.9), 

u.0 = 1 / k - 4 k i e i j k F ( k )  8n eikZkzd3k = IOmF(k)dk,  (3.13) 

so that F(k)dk  may be regarded as the contribution to mean helicity of the 
turbulence from the element of wave-number space between the spheres of 
radii k and k + dk. 

Suppose now that we weaken the symmetry conditions further, and suppose 
that the turbulence is axisymmetric (but without reflexional symmetry) about 
an axis in the direction of a unit vector A. The tensor Qij(k) (and so the tensor 
A+j) is then invariant with respect to rotations of the axes of reference about 
this axis. Hence 7, must coincide with one of the principal axes of A,j, say 
A = (1,0,0). The general form for Qj(k) satisfying the conditions (3.3) and (3.5) is 

Qij(k) = Ak,k,+ Bhihj+G6.j+ D(fc,hi + k j Q  + i G ~ i j k h k + i i H ~ ~ ~ ~ ~ k ~  

+iiM[(k A 7,),kj-(k A A)jk,]+iiN[(k A A),h,-(k A A),hi], (3.14) 

where A ,  B, . . ., N are real functions of k .  k and k .  A, i.e. of k and k,, related by 

k2A+C+k1D = 0, 

k, B + k2D = 0, 

-G+k22M+k,N = 0. 

Substitution of (3.14) in (3.2) and simplification using (3.15) leads to 

(3.15) 

(3.16) 
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It is evident from this expression that (as we know already) A,2=A33, but that 
A,, may be quite different in magnitude (and possibly in sign). Once again, 
the only contributions to A ,  come from terms of Qij(k) which change sign on 
reflexion in the origin. 

It is not neoessary to go into similar details for the general case of homogeneous 
turbulence with no directional symmetry, for which the most general form of 
spectrum tensor consists of 31 terms of which 21 change sign on reflexion in the 
origin (Batchelor 1953, $3.3).  These 21 terms give (in general) unequal contribu- 
tions to the principal values a, P, y of A,. Comparison of (3.2) with the equation 

(3.17) 

suggests that Aij is determined by the structure of the energy-containing eddies 
(with perhaps a little weighting a t  the low-lc end of the spectrum), and so, on 
dimensional grounds, 

(3.18) 

where a,, Po and yo are dimensionless constants (positive or negative) of order 
unity. 

It is evident that the effect of turbulence on a large-scale magnetic field 
depends critically on whether the turbulence has reflexional symmetry in a 
point, and it may be as well to consider briefly whether a lack of reflexional 
symmetry is a likely state of affairs in geophysical and astrophysical turbulence. 
I n  general such turbulence arises as a result of an instability of a mean flow, the 
instability being frequently driven by buoyancy forces. It seems likely that 
this turbulence can lack reflexional symmetry only if the mean fields (velocity, 
temperature, stc.) themselves exhibit some lack of reflexional symmetry. The 
simplest, and most frequent, example arises in the case of turbulent thermal 
convection in a rotating fluid. The rotation vector and the direction of mean 
heat flux are together sufficient to give a definite right-handedness or left- 
handedness to the system, and it seems likely that a corresponding property will 
be represented in the statistics of the turbulence. 

4. The helicity effect; physical interpretation 
In the pseudo-isotropic case, A,, = a&,,, and equation (2.22) becomes 

aB, a -- - - V A B, + hV2B,. 
at A 

The term (a/h)V A B, in (4.1) represents a tendency to generate magnetic field 
in the direction opposite (if a < 0)  to that of the large-scale current J = pV A B,, 
and it is of interest to examine the physical mechanism underlying this effect. 
Suppose that we choose axes Oxyz a t  a point in the fluid so that, locally, 

J, = (O,O,J , ) ,  B, = -pJ,(y, 0, O ) ,  (4.2) 

(4.3) 

and consider the action of a typical ‘ helicity wave ’ 
u = uo(O, sin(kx- at), cos(kx-at)) = ReQei(k”-d), 
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where i3 = uo(O, -i, 1)) and, to be definite, k > 0, (T > 0. For this motion, 

(4.4) 
~ 

w = ku, u . 0  = ku; > 0, 

(the average being with respect to x or t ) .  The streamlines (and vortex lines) 
of the motion are straight, but the particle paths (when cr =!= 0) are circular. 
If  we imagine the vortex lines closed at  large values of Iy\ and Iz I ,  then they are 
linked in the manner that gives positive helicity (Moffatt 1968). 

According to (2.12), this motion generates a perturbation field 

A 

If cr < hk2 (as is the case if (T M to1, k M Z-1, R, Q 1) then b M (iBo/Ak)O, and so 

B u  
hk 

b 7 A(O,cos(kx-crt) ,  -sin(kx-crt)). 

The lines of force of the perturbed field B,+ b are left-handed helices, all with 
the same curvature (figure 2).? The total field in the region between the lines 
AC, A C ’  receives contributions from all the lines of force which penetrate that 
region; and it is evident that the unequal cancellation of contributions to the 
x-component of the generated field from neighbouring lines of force can lead to 
an average (negative) component of B in the z-direction. 

This generation of B, is assured, however, only if the direction of u (indicated 
by the small arrows) i s  such as to reinforce the convection of the field into the 
region between AC, A’C’. This is so in the case (T < hk2 considered here, for which 

u A b = - (B,ui/hk)(O, 0, I), 
(4.7) } V A (u A b) = (a/h)V A B,, a = -u; /k .  

A 

Consider, however, the other limit cr 9 Ah2, for which b N“ - (kBo/cr)O, and 
b = - (kB,/(~)u, u A b = 0. The lines of force of the perturbed field B,+ b 
are still helices, but the motion u does not reinforce the distortion, and so an 
average B, does not materialize. It is evident that u A b is non-zero only if u 
and b are out of phase, and this arises only if the process of generation of b has 
a dissipative character. 

Likewise, a fully turbulent motion with non-zero helicity (say positive) will 
distort lines of force into ‘random helices’ with negative mean screw. In  the case 
R, < 1 treated in this paper, the expression for u A b contains contributions of 
the form (4.7) for each k represented in the Fourier decomposition of the u-field, 
together with terms periodic in x which vanish when the average u A b is taken. 
The cancellation effect between neighbouring lines of force will be incomplete 
when the initial field is non-uniform, and the generation of a mean component 
in the direction of -V A B, will result. This effect is so intimately related to the 

t Note that 
(B,+b).VA(B,+b) = b . ( V A b )  =B:z l , / kA*>  0 

which might suggest (wrongly) a right-handed helical structure. 



444 H .  K .  Noflatt 

helicity of the background turbulence that the term ‘helicity effect ’ would seem 
appr0priate.t 

The orders of magnitude of the two terms in (4.1) contributing to the rate of 

so that 

Hence, if L B h2/a, the development of the field will be dominated by the tur- 
bulence term, at any rate as long as the scale of the field remains of order L, or 
greater. 

FIGURE 2.  Distortion of initially straight lines of force by the helicity wave (4.3). The 
initial gradient of B is indicated by the different thickness of the lines of force. The velocity 
is indicated by the symbols .f 0 J. @ in (a),  where 0 means into the paper and 0 means 
out of the paper. The lines of force are distorted into left-handed helices, and consideration 
of all the contributions to B from within the region in ( b )  between the lines AC, A‘C’ 
indicates a net generation of B, (in the negative z-direction) due t o  unequal cancellation 
of contributions from neighbouring lines of force. 

The equation for magnetic energy density, from (4.1), is 

In the case of a random homogeneous field, this gives 

-(iB2) a = a: - (B.(V A B))-h at h (4.9) 

(where the brackets (.. .) signify a space average1 over scales much greater than 
L),  so that the magnetic energy density is affected by the turbulence only through 
the appearance of a mean helicity (B . (V A B)) of the field B. That such a mean 
helicity must appear is evident from the equation, 

d 2a: 
(B . (V A B)) = ((V A B)2) + h(B . V2(V A B) + (V A B) . V2B), (4.10) 

-f The effect has been described as the ‘a-effect’ by Steenbeck et al. (1966). 
$ Or equivalently, an average over an ensemble of realizations of the B-field. 
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derivable from (4.1) together with its curl. The first term on the right re- 
presents a production of mean helicity with the same sign as a, i.e. opposite to 
that of the mean helicity u.0 of the background turbulence. The case of a 
localized ‘blob ’ of magnetic field (on the scale L)  is similar, the brackets {. . .) in 
equations (4.9) and (4.10) being then replaced by ... dv, the integral being 
throughout the whole extent of the blob. 

5. Dynamo action in the pseudo-isotropic case 
(i) Evolution of a single Fourier component of B(x, t )  

As a preliminary to the study of the evolution either of a homogeneous random 
B-field or of a localized B-field, it is appropriate to examine the evolution of a 
single Fourier component of the field; equation (4.1) evidently admits solution 
of the form 

hewteix-x, K .  ii = 0, (5-1) 

where 
A ia A 

(w+hK2)B= - K  A B. 
h 

(The symbol K will be used for the wave-vector of any Fourier component of the 
B-field, with the implicit understanding that IKI << Ik[ where k is any wave- 
vectorhat wkich t>ere is significant contribution to the background turbulence). 
With B = B,+iBi, the real and imaginary parts of (5.2) are 

and 

so that 

A h 

(W + hK2) B, = - (a/h)K A Bi, 

(w +hK2)  6% = (a/h)K A B,, 
(5.3) 

(w + hK2)2 ($) = ( %)2 K 2  (i:), (5.4) 

and, for a non-trivial solution, 

w = - hK2 t. (aK/h)  = wl, w2, say. (5.5) 

From (5.3) we then have B,= T K  A B,, (5.6) 
A A A  

A h  

where k = K/K, so that I 
corresponding to the initial condition B(x, 0) = BOeaqx is 

= I 6rl and Bi. B, = 0, for each mode. The solution 

(5.7) 

(5.8) 

say, then the eigenvalue w1 is positive, and the corresponding solution (5.1) 
grows exponentially in time. The parabolas 

(5.9) 

B(x,t) = [&(Bo+i& A Bo)ewlt+&(Bo-i& A Bo)e~at]em-x. 

It is evident from (5.5) that if 

K < a/h2 = K,., 

wl, w2 = hK( & K,- K )  

are shown in figure 3. The maximum rate of amplification occurs at  K = *Kc, 

(5.10) and at  this value w1 = w,,, = 4hK: = a2/4h3. 
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Note that, with a = O(utZ), K ,  = O(u$H/h2), so that 

K,Z = O(Ri). (5.11) 

Hence amplification will occur (in general) only on length scales of order Ri2Z 
and greater. 

I \ -\ \ 

\ 

FIGURE 3. Variation of o1 and w 2  as functions of K. The decay rate w,, = -hK2  that 
would occur in the absence of turbulence is shown also for comparison. 

The assumption following (2.13) concerning the time-scale of the large-scale 
field may now be vindicated. A minimum estimate for this time-scale (i.e. assum- 
ing maximum rate of change of B) is 

(5.12) 

Hence t l / t ,  = O(RG3), (5.13) 

and this is certainly large (as assumed) when R, < 1. Note that waves for which 
K B K ,  have wl, N - hK2, and are negligibly affected by the turbulence. 

(ii) Evolution of a random B-Jield 
Suppose now that B(x, 0) (and so B(x, t ) )  is itself a homogeneous random function 

B(x, t )  = dW(K, t)eaSx, (5.14) 
of x. Let s 
wherein dW(K, t )  evolves according to sub-section (i) above; then 

BJx, t )  = Qij(K, t )  d y ( K ,  0) eiKeX,  (5.16) 
h 

where Qij(K, t )  = & ( e W i t  + e @ )  Jii - +ieijX K k ( e w l *  - eu2t ), (5.16) 

and w,(K), w2(K)  are as given in (5.5) or (5.9). Note that Qij(K,t) satisfies the 
condition, necessary for the reality of B(x, t ) ,  

&ij( - K, t )  = &$j(K, t ) .  (5.17) 

Clearly the development of Bi(x, t )  is ultimately dominated by contributions 
to the integral (5.15) from the region K < K ,  of K-space for which w1 > 0, 
and since w2 < 0 ,  we may take (in that region) 

Q,j(K, t )  - $(aij - i e d j k f i k ) e U l t .  (5.18) 

s 
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The spectrum tensor of the field B(x, t )  is given by 

It will be sufficient to consider the case in which B(x,O) is (statistically) 
pseudo-isotropic, so that 

rkl(K, 0) = M(K)(&k.-RkRt) -iN(X)ekimgm. (5.20) 

Substitution of (5.16) and (5.20) in (5.19) leads, after some simplification, to 

rij(K, t )  = $[M(K)(e2"lt + e2"Zt + ~ ~ ( ~ ) ( e 2 ~ l t -  e 2 ~ 2 t ) l  (aii -RgRj) 
- +i[N(K)(eZ"lt+ e2"St ) + M(K)(e2"lt - e2wat)]eijij,l?,, (5.21) 

and, for K < K, and ~,,,t % 1, this gives 

Fij(K, t )  - + [ N ( K )  + N ( K ) ]  (6,j-R~Rj-i€~,kBk)e201t. (5.22) 

The magnetic energy density is given by 

&(B2) = + l?$i(K,t)d3K, s (5.23) 

so that, ultimately, restricting the integration to the region K < K,  which pro- 
vides the growing contribution, 

~ ( B z )  2 - ; J K c  [ M ( K )  + N ( K ) I  e 2 w l ( = ) t 4 n ~ z d ~ .  (5.24) 

It may reasonably be assumed that M ( K )  and N ( K )  vary continuously in the 
range (0, K,). The function 4nK2M(K) is the initial magnetic energy spectrum 
function, and it may be expected to have a maximum at some wave-number 
of order L-l, since the initial field has typical length scale L. The function 
N ( K )  will be identically zero if the initial field is strictly isotropic; if not, it may 
be expected to have the same qualitative behaviour as M ( K ) .  With 
wl(K)  = hK(K,- R),itisevidentfrom (5.24) thatthereisapreferentialamplifica- 
tion of different contributions in the range (0 ,  K,) and that ultimately the integral 
is dominated by contributions from the neighbourhood of K = +Kc. Asymptotic 
evaluation of the integral gives, for w,,, t % 1, 

0 

00 

*(BZ) N Zn($Kc)2 [M(+K,) + N(&K,)] ez"m=t e-2h(xb=c)ZtdK L 
= &nK: [.&!'(+Kc) +N(+K,)]  ( n / 2 h t ) 4 e 2 " m a x t .  (5 .25)  

To be quite specific, suppose that 

N ( K )  = 0, 4nK2M(K) = CK4e-LaK8, (5.26) 

corresponding to an initially isotropic random B-field with a simple spectrum 
function having a single maximum at a wave-number of order L-l. Then 

(5.27) 
1 
4n 

+(B2) - $(+n)S CK: -exp ( - tL2K,2) 
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With a: = O(u2 1 ) )  the doubling time for the magnetic energy is ultimately of order 
Rm3t0 where to = l/uo and the characteristic length scale of the field that ultimately 
dominates is of order K;l,  i.e. of order R221. (This may be large or small compared 
with its initial scale L = O(e-lZ).) 

(iii) Evolution of a localized B-field 
Suppose now that the initial field B(x, 0) is that due to a localized current dis- 
tribution J(x,  0), i.e. 

(5.28) 

Such a field is in general O(lx1-3) as 1x1 -too and its Fourier transform has an 
associated directional singularity at K = 0. Writing 

V A B(x, 0) = ,uJ(x, 0), V . B ( x ,  0) = 0. 

B(x, 0) = B(K, 0) eipnXd3K, (5.29) 

it  is known (by analogy with the problem studied by Phillips 1956) that, for 

(5.30) 
K+O, $(K, 0) = ( S , - & I r ' j ) ~ + O ( R ) ,  

where 8 is independent of K. 

s *  

The Fourier transform again evolves as in (i) above, so that 

Bi(x, t )  = Qij(K, t )  &K, 0) eiK.=d3K, (5.31) f 
and the total energy of the blob is 

Qtj(K, t)&z(K, t)Bj(K, O)&(K, O)d3K, (5.32) 

so that, ultimately, 

M N +ezum=t (sij- ieijkBk) (si, + ieilmRm) .Bj(+~c, 0) 

x@(+K,, O)dA($K,). exp{-2h(K-+K,)2}dK, 

f 
s 

where K, = K c k ,  and dA(&K,) indicates integration over the surface of the 
sphere lK1 = SK, in K-space. This simplifies to 

M 1 4 ( LT 2At ) 'e2wrnart / [ l f i C l 2 - 2 k . 6 ,  A kt) ldA(tKc) ,  (5.33) 

where sc( = &.+i&ci) = (&Kc, 0). 

6. Dynamo action for general homogeneous turbulence 

wave solutions of the form (5.1); substitution gives 
When the principal values a, /3, y of &are all different, (2.23) still admits plane 

(W+AK2)& = (i/A) (YK2&PK3&), (6.1) 
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and two other components given by cyclic permutation. For a non-trivial 
solution, 

a cubic with roots w = -hK2, (6.3) 

w,, 02 = - hK2 k (l /A)(PyK; + yaKg + O I P K ~ ) ~ .  (6.4) and 

The two roots given by (6.4) reduce to those given previously in (5.9) in the iso- 
tropic case a = /3 = y .  

The root (6.3) is relevant if the right-hand side of (6.1) (and the two similar 

B2P &BY 
Kl  K2 K 3 .  

equations) vanishes, i.e. if 
_ _ - - = -  - 

Since the field must satisfy &. 6 = 0, this can arise only if 

K2, KE Ki  -+-+- = 0) 
a P Y  

and this can happen only if a, /3 and y are not aU of the same sign. In  this case, 
(6.6) defines a cone in K-space, and if K lies along a generator of this cone, then 
there is no interaction with the turbulence, and the wave decays as e-AK2t; 
this circumstance must clearly be regarded as exceptional. 

I i the roots (6.4) are substituted back in the three equations for the components 
of B, we obtain 

(6.7) 

where Q = + (PyK: + ~ E K ;  + a@K;)*. (6.8) 

6 ( t )  = B(UeYt + B@)eWat, 

-~ 8 1  - - - 8 2  - 8 3  

yKg+&i’Ki - yK ,Kz f iK ,Q  - -PK,K,TiKTQ’ 

6 

For these modes, K .  B = 0 without restriction on the direction of K. If K does 
not satisfy (6.6)) then the general behaviour may be represented by a sum of 

(6.9) modes, viz. 

the values of B(l) and B(2) being obtainable in terms of $ ( O ) ,  using (6.7). 
The roots (6.4) are complex (with negative real part) if Q2 < 0, and they are 

real if Q2 > 0. If, moreover, 

Q2 = PyK2,fyaKg +@Kg > h4K4, (6.10) 

then the root W ,  is real and positive, and the associated wave is amplified exponen- 
tially in time. If a, P and y are all of the same sign, then this behaviour is quali- 
tatively the same as in the isotropic case; the surface Q2 = h4K4 is a closed 
ovoid intersecting the K,, K ,  and K ,  axes in the points 

(PrP (YE)* 5 -  h2 9 2- A 2  9 -tF’ 

respectively, and a mode of wave-number K decays or amplifies according as 
the end-point of the vector K lies outside or inside this surface (figure 4). 
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If a, /3 and y have different signs, suppose that a 2 p > 0 > y (the case 
p < 0 being similar). The surface Q2 = h4K4 intersects any plane through the 
K3-axis in a figure-of-eight, and once again the mode decays or amplifies according 
as K lies outside or inside the surface. If IyI $ a, p, then the surface is closely 
wrapped round the K,-axis. In  this case, only disturbances for which K is nearly 
aligned with the K,-axis (and satisfying K < (./?)&/A2) will be amplified. 

K2 K2 
Decay Decay 

K3 

(i) a>.$ > y > O  (ii) asP>O>y 

FIGURE 4. Intersection of the surface Q2 = h4K4 with the K,-K,  plane. In  the axi- 
symmetric case (a  = p) the surface is the surface of revolution obtained by rotating the 
curve about the K3-axis. The region inside the surface is the region of K-space in which 
Fourier components of the B-field are amplified. 

If B(x, 0 )  is a random homogeneous function of X, it is clear that, since the 
growth rates of its constituent Fourier components depend on the direction as 
well as the magnitude of their wave-vectors, anisotropy will develop even if the 
initial B-field is isotropic. The anisotropy will be particularly strong if a, p and y 
are very different in magnitude. For example, in the case y < 0, Iy\ 9 a,P, 
(case (ii) in figure 4) the decay of all Fourier components for which 

KDK, 2 (a/I?’l)KmV/IYI)K3 
implies a systematic increase in the characteristic length scale of the field in 
the x and y directions. Ultimately, the field will vary significantly only in the 
z-direction. 

Similar considerations apply to the case of a localized initial field. In this case 
if y < 0, and I yI > a, p, then the lateral extent of the blob in the z and y directions 
will increase as (At)*, since the dominant process affecting Fourier components 
with wave-vectors in the corresponding directions in K-space is the conventional 
ohmic decay. The length scale in the z-direction on the other hand will settle 
down to O(h2//yl)  as in 95. 

7. Discussion 
It has been established in the foregoing sections that turbulence having a 

dominant scale I is capable of systematically amplifying a magnetic field whose 
initial length scale L is large compared with I ;  it was assumed that R, < 1; 
and a sufficient condition for dynamo action is then that at least two of the 
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principal values a, p, y of the tensor ,&,defined by (3.2) in terms of the spectrum 
tensor of the turbulence, should be non-zero, a condition that is generally satis- 
fied in turbulence that lacks reflexional symmetry. 

The assumption LIZ 3 1 is to some extent merely a convenience in describing 
the problem at the outset. If the initial field B(x, 0) is a homogeneous random 
function of x and if the condition LIZ + 1 is not satisfied, then any of its Fourier 
components for which ]KI = O(1-I) will decay quite rapidly (since R, < 1) 
leaving only those components (possibly extremely weak) for which IKI < Z-l. 

These would decay slowly in the absence of turbulence; but the effect of the 
turbulence is to regenerate them through a coherent interaction between the 
velocity and the small-scale magnetic fluctuations. 

The characteristic scale of the amplifying magnetic field ultimately settles 
down to O(RG~Z). There is an obvious difficulty in designing a laboratory experi- 
ment to test the theory; with R, z 10-1 (in mercury, this would require a tur- 
bulent Reynolds number R z lo5) and with 1 z 10V m, a magnetic field would 
be amplified only on scales of order 1 m and greater. The possibility of an 
experiment on mercury (or any other liquid metal) on this scale is remote. 

In  situations of interest in astrophysics, the magnetic Reynolds number 
may often be of order unity, or much greater. Under these circumstances, it  
is possible that the low wave-number Fourier components of the B-field (i.e. 
those for which lKlZ < 1) still grow exponentially in time (and Roberts 1969 
has provided evidence in the case of velocity fields that are periodic in space 
and in time that this is the case), but the evolution of the field is likely to be 
dominated by the growth o f  Fourier components for which lKll= O(1) and 
greater, and the approach described in this paper is not adequate to treat such 
behaviour. 

The crucial stage of this workis containedin tj 2; because, once (2.23) is accepted, 
dynamo action follows as an inevitable consequence without further approxima- 
tion. The analysis of 6 2 has been presented in a manner that makes some appeal 
to physical intuition, but minimal appeal to mathematical formalism. The 
analysis may be formalized by introducing a space variable X = RLx, and a time 
variable T = Rkt (these being suggested by the results (5.11) and (5.13))) and 
by then allowing B to depend (independently) on x, X, t and T .  The dependence 
on x, t describes the fluctuations on scales characteristic of the turbulence, 
and the dependence on X, T describes the long-time development of the large- 
scale structure of the field. To lowest order in R,, this approach leads to precisely 
the equations (2.8) and (2.16) given in 0 2; and it can also yield systematic higher 
approximations. If the helicity spectrum P(k)  is identically zero, then the first 
effect of the turbulence at low R, must be sought at these higher levels and at 
this stage, higher order spectral tensors (than the second) of the turbulence 
enter the analysis. Developments in this direction perhaps merit further study. 

I am grateful to Professor Philip Saffman and Dr Robert Kraichnan for their 
penetrating comments on the first draft of this paper, and to Dr Glyn Roberts, 
who drew my attention to the important series of papers by Steenbeck, Krause & 
Radler. 
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